Difference between revisions of "Vertical crater retreat"

From QueensMineDesignWiki
Jump to: navigation, search
Line 1: Line 1:
 
From Queen's University Mine Design Wiki
 
From Queen's University Mine Design Wiki
   
<br>
+
<br>
   
 
:''This article is about the orebody requirements and developmental steps involved in Vertical Crater Retreat planning and mining.''
 
:''This article is about the orebody requirements and developmental steps involved in Vertical Crater Retreat planning and mining.''
   
<br> '''Vertical crater retreat (VCR), '''also known as Vertical retreat mining, is an open stoping, bottom-up [http://en.wikipedia.org/wiki/Mining mining] method that involves drilling large-diameter holes into the orebody vertically from the top, and then blasting horizontal slices of thethe orebody into an undercut.&nbsp;
+
<br>'''Vertical crater retreat (VCR), '''also known as Vertical retreat mining, is an open stoping, bottom-up [http://en.wikipedia.org/wiki/Mining mining] method that involves vertically drilling large-diameter holes into the orebody from the top, and then blasting horizontal slices of the orebody into an undercut.&nbsp;
   
Similar to [http://queensminedesign.miningexcellence.ca/index.php?title=Sub-level_open_stoping&action=edit&redlink=1 Sublevel open stoping] and [http://queensminedesign.miningexcellence.ca/index.php?title=Blasthole_stoping&action=edit&redlink=1 Blasthole stoping] methods, VCR mining is used for steeply-dipping (&gt;45º), or both vertically and horizontally large orebodies with competent ore and waste rock strength.&nbsp; It differs from other open stoping methods in that it is a bottom-up method, as opposed to a left-to-right method, and it does not require the excavation of sublevel drifts before blasting and mucking can take place.
+
Similar to [http://queensminedesign.miningexcellence.ca/index.php?title=Sub-level_open_stoping&action=edit&redlink=1 Sublevel open stoping] and [http://queensminedesign.miningexcellence.ca/index.php?title=Blasthole_stoping&action=edit&redlink=1 Blasthole stoping] methods, VCR mining is used for steeply-dipping (&gt;45º), or both vertically and horizontally large orebodies with competent ore and waste rock strength.&nbsp; It differs from other open stoping methods in that it is a bottom-up method, as opposed to a left-to-right method, and it does not require the excavation of sublevel drifts before blasting and mucking can take place. The thickness of one horizontal slice varies between 2 and 5 meters in height.
 
Holes are typically 165mm in diameter, allowing for a blast pattern spacing of 4.0 by 4.0m, and the thickness of one slice of ore varies between 2 and 5m <ref> "Vertical Crater Retreat -VCR." 2008. Atlas Copco. http://194.132.104.144/Websites%5CRDE%5Cwebsite.nsf/$All/2B0103C539FA78984125674D004AA392?OpenDocument</ref>.
 
   
 
== History ==
 
== History ==
Line 15: Line 15:
 
VCR is a suitable mining method for orebodies that exhibit the following characteristics:
 
VCR is a suitable mining method for orebodies that exhibit the following characteristics:
   
<br>
+
<br>
   
{| cellspacing="0" cellpadding="5" border="1" align="center" style="width: 793px; height: 179px;"
 
  +
{| style="width: 793px; height: 179px" border="1" cellspacing="0" cellpadding="5" align="center"
 
|-
 
|-
! scope="col" style="background: rgb(239, 239, 239) none repeat scroll 0% 0%; -moz-background-clip: border; -moz-background-origin: padding; -moz-background-inline-policy: continuous;" |
+
! style="background: rgb(239,239,239); -moz-background-clip: border; -moz-background-origin: padding; -moz-background-inline-policy: continuous" scope="col" |
==== Characteristics ====
+
==== Characteristics ====
   
! scope="col" style="background: rgb(239, 239, 239) none repeat scroll 0% 0%; -moz-background-clip: border; -moz-background-origin: padding; -moz-background-inline-policy: continuous;" |
+
! style="background: rgb(239,239,239); -moz-background-clip: border; -moz-background-origin: padding; -moz-background-inline-policy: continuous" scope="col" |
==== Requirements ====
+
==== Requirements ====
   
 
|-
 
|-
 
|
 
|
'''Orebody Dimensions &nbsp; &nbsp; &nbsp; '''&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
+
'''Orebody Dimensions &nbsp; &nbsp; &nbsp; '''&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
   
 
|
 
|
Line 37: Line 37:
 
|
 
|
 
*The strength of the waste rock must be competent in order to blast against it without having excessively large amounts of dilution
 
*The strength of the waste rock must be competent in order to blast against it without having excessively large amounts of dilution
*The ore deposit is to be of medium to competent strength <ref> Archibald, J. F. "Mining Systems and Methods." 2007. MINE 210. Department of Mining Engineering, Queen's University at Kingston. </ref>
+
*The ore deposit is to be of medium to competent strength <ref>Archibald, J. F. "Mining Systems and Methods." 2007. MINE 210. Department of Mining Engineering, Queen's University at Kingston. </ref>
   
 
|-
 
|-
Line 56: Line 56:
 
|}
 
|}
   
<br>
+
<br>
   
 
== Advantages ==
 
== Advantages ==
Line 63: Line 63:
 
*'''Good Recoveries:''' Continuous mucking from the drawpoints can take place after blasting.&nbsp; In addition, VCR&nbsp;mining can be used with a high degree of mechanization, generating a high level of productivity.
 
*'''Good Recoveries:''' Continuous mucking from the drawpoints can take place after blasting.&nbsp; In addition, VCR&nbsp;mining can be used with a high degree of mechanization, generating a high level of productivity.
 
*'''Cost:''' Once the pre-mining development is in place, VCR mining has a low operating cost, as it is a bulk mining technique and employees are not required to manually operate the mucking machinery
 
*'''Cost:''' Once the pre-mining development is in place, VCR mining has a low operating cost, as it is a bulk mining technique and employees are not required to manually operate the mucking machinery
*'''Wall Support:''' VCR&nbsp;stoping shares some great features with sublevel open and shrinkage stoping.&nbsp; Good wall support is offered during the VCR&nbsp;stoping phase, using shrinkage <ref> Osborne, Kelly and Baker, Vern. "Vertical Crater Retreat Mining". SME mining engineering handbook, voloume 2, 1992.</ref> &nbsp;
+
*'''Wall Support:''' VCR&nbsp;stoping shares some great features with sublevel open and shrinkage stoping.&nbsp; Good wall support is offered during the VCR&nbsp;stoping phase, using shrinkage <ref>Osborne, Kelly and Baker, Vern. "Vertical Crater Retreat Mining". SME mining engineering handbook, voloume 2, 1992.</ref> &nbsp;
   
<br>
+
<br>
   
 
== Disadvantages ==
 
== Disadvantages ==
Line 74: Line 74:
 
*'''Subsidence''' of overlying stope zones can be a problem as open stope expanses are left after mucking.&nbsp; This can be avoided by using a backfill
 
*'''Subsidence''' of overlying stope zones can be a problem as open stope expanses are left after mucking.&nbsp; This can be avoided by using a backfill
   
 
  +
<br>
   
 
== Overall Mining Process ==
 
== Overall Mining Process ==
Line 82: Line 82:
 
==== '''Planning''' ====
 
==== '''Planning''' ====
   
The first characteristics to evaluate are the size, dip and plunge of the orebody, which is important because the installations of draw points are essential to the gravity flow of the blasted ore for collection.&nbsp; The second element to assess is the shape and consistency of the orebody.&nbsp; Two horizontal drifts are required before mining can take place, which are to have a very large vertical separation.&nbsp; The distance between the two drifts depends on the consistency of the ore, the drilling accuracy, accessibility and competency of the hanging wall.&nbsp; These drifts are cut inside the orebdoy in order to minimize developmental costs.&nbsp; The next step is assessing the blasting characteristics of the rock, which will help to determine the drilling pattern and stope sizing of the mine.&nbsp; These tests can be done on similar ore blocks, or simply theoretically.&nbsp; Early consideration of equipment selection can be done at this point, as they will be based on stope and block size, as well as production requirements and most importantly availability.&nbsp; <br>
+
The first characteristics to evaluate are the size, dip and plunge of the orebody, which is important because the installations of draw points are essential to the gravity flow of the blasted ore for collection.&nbsp; The second element to assess is the shape and consistency of the orebody.&nbsp; Two horizontal drifts are required before mining can take place, which are to have a very large vertical separation.&nbsp; The distance between the two drifts depends on the consistency of the ore, the drilling accuracy, accessibility and competency of the hanging wall.&nbsp; These drifts are cut inside the orebdoy in order to minimize developmental costs.&nbsp; The next step is assessing the blasting characteristics of the rock, which will help to determine the drilling pattern and stope sizing of the mine.&nbsp; These tests can be done on similar ore blocks, or simply theoretically.&nbsp; Early consideration of equipment selection can be done at this point, as they will be based on stope and block size, as well as production requirements and most importantly availability.&nbsp; <br>
   
 
Once the essential planning is complete, the top and bottom drifts are drilled and blasted, and any necessary [http://queensminedesign.miningexcellence.ca/index.php/Ground_support ground support] is installed.
 
Once the essential planning is complete, the top and bottom drifts are drilled and blasted, and any necessary [http://queensminedesign.miningexcellence.ca/index.php/Ground_support ground support] is installed.
Line 105: Line 105:
   
 
==== '''Drilling''' ====
 
==== '''Drilling''' ====
  +
  +
Holes are typically 165mm in diameter, allowing for a blast pattern spacing of 4.0 by 4.0m, and the thickness of one slice of ore varies between 2 and 5m .
   
 
==== '''Blasting''' ====
 
==== '''Blasting''' ====

Revision as of 15:31, 10 February 2011

From Queen's University Mine Design Wiki


This article is about the orebody requirements and developmental steps involved in Vertical Crater Retreat planning and mining.


Vertical crater retreat (VCR), also known as Vertical retreat mining, is an open stoping, bottom-up mining method that involves vertically drilling large-diameter holes into the orebody from the top, and then blasting horizontal slices of the orebody into an undercut. 

Similar to Sublevel open stoping and Blasthole stoping methods, VCR mining is used for steeply-dipping (>45º), or both vertically and horizontally large orebodies with competent ore and waste rock strength.  It differs from other open stoping methods in that it is a bottom-up method, as opposed to a left-to-right method, and it does not require the excavation of sublevel drifts before blasting and mucking can take place. The thickness of one horizontal slice varies between 2 and 5 meters in height.

History

Orebody Characteristics

VCR is a suitable mining method for orebodies that exhibit the following characteristics:


Characteristics

Requirements

Orebody Dimensions                                           

  • Steeply-dipping orebodies (>45º), with widths of no less than 12-15m, or
  • Very large both vertically and horizontally
Ore and Rock Strength          
  • The strength of the waste rock must be competent in order to blast against it without having excessively large amounts of dilution
  • The ore deposit is to be of medium to competent strength [1]
Grade
  • VCR is not a selective mining method, therefore the ore grade should be low to medium, and it should be relatively uniform throughout the entire orebody
Depth
  • VCR mining can occur in mines at any depth.  Work is carried out in reinforced, small drifts; and given the nature of the mining method, no personnel has to work directly within the drift.  Therefore safe execution of VCR mining can be carried out in deep mines
Oxidizing Ores
  • Given the small, localized stope size in VCR mining, ore can be recovered very soon after blasting occurs.  Therefore, oxidizing and self-cementing ores such as pyrrhotite can be mined using this method


Advantages

  • Safety: miners are working in a drift taht is adequately ventilated and has a fully supported roof.  Furthermore, no workers are required to work inside the stope, minimizing the risk of unexpected injuries.  As automated Machinery can be used, workers are not at risk of equipment-related injuries
  • Good Recoveries: Continuous mucking from the drawpoints can take place after blasting.  In addition, VCR mining can be used with a high degree of mechanization, generating a high level of productivity.
  • Cost: Once the pre-mining development is in place, VCR mining has a low operating cost, as it is a bulk mining technique and employees are not required to manually operate the mucking machinery
  • Wall Support: VCR stoping shares some great features with sublevel open and shrinkage stoping.  Good wall support is offered during the VCR stoping phase, using shrinkage [2]  


Disadvantages

  • Dilution of ore can result if waste rock is less than competent in strength, or improper blasting techniques are carried out.  Furthermore, sorting is not possible with VCR mining
  • Risk of drawpoint blockage: if improper blasting techniques are carried out, large rocks can get lodged in the drawpoint and retard the movement of material through them, resulting in lost production
  • a Large capital investment is required to establish the essential drift infrastructure required for proper VCR mining to take place, which can cost a lot of money up front.  Furthermore, the acquisition of equipment is necessary before mining can occur.
  • Subsidence of overlying stope zones can be a problem as open stope expanses are left after mucking.  This can be avoided by using a backfill


Overall Mining Process

The first step in designing a VCR mining operation is establishing that the orebody meets the required characteristics.  Not only must the dimensions, ore/rock strength, grade and depth be suitable for the bulk gravity teachnique, but the orientation of the orebody must be such that pre-mining infrastructure can be developed. A capital investment is required in order to establish the necessary infrastructure, such as shafts and drifts, as well as to acquire the necessary equipment. 

Planning

The first characteristics to evaluate are the size, dip and plunge of the orebody, which is important because the installations of draw points are essential to the gravity flow of the blasted ore for collection.  The second element to assess is the shape and consistency of the orebody.  Two horizontal drifts are required before mining can take place, which are to have a very large vertical separation.  The distance between the two drifts depends on the consistency of the ore, the drilling accuracy, accessibility and competency of the hanging wall.  These drifts are cut inside the orebdoy in order to minimize developmental costs.  The next step is assessing the blasting characteristics of the rock, which will help to determine the drilling pattern and stope sizing of the mine.  These tests can be done on similar ore blocks, or simply theoretically.  Early consideration of equipment selection can be done at this point, as they will be based on stope and block size, as well as production requirements and most importantly availability. 

Once the essential planning is complete, the top and bottom drifts are drilled and blasted, and any necessary ground support is installed.

Mining

Holes are drilled vertically from the top drift through to the bottom drift.  Holes are charged such that blasting of horizontal slices of the orebody occurs, progressing from the bottom drift to the top drift.  In any new region of the mine, the ore zone is assessed as soon as possible, so that ore data can be collected and compared with the original estimates calculated by mine engineers.  This offers the engineers a chance to analyze the data and make any required modifications before the following stope layout is planned.  Extraction of the blasted material can now occur as fast as the system is designed, however just enough broken ore is mucked from the stope to create the required volume of space for successive blasts.  Blasted ore is collected at the drawpoints using LHD vehicles, and then transported to orepasses, sometimes to be crushed before it is transported to surface for processing.  Upon completion of the ore extraction, the stope is backfilled from the top drift, providing rock stability for upcoming blasts.  The process is repeated until the orebody is mined.   

Mining

Stope Layout

Mine Access

Production

Ventilation

Equipment

Material Handling

Drilling

Holes are typically 165mm in diameter, allowing for a blast pattern spacing of 4.0 by 4.0m, and the thickness of one slice of ore varies between 2 and 5m .

Blasting

Ground Support

Cost

References

  1. Archibald, J. F. "Mining Systems and Methods." 2007. MINE 210. Department of Mining Engineering, Queen's University at Kingston.
  2. Osborne, Kelly and Baker, Vern. "Vertical Crater Retreat Mining". SME mining engineering handbook, voloume 2, 1992.