Mine waste dump stability analysis

From QueensMineDesignWiki
Revision as of 21:59, 24 November 2014 by EStevenson (talk | contribs)

Jump to: navigation, search

Stability Analysis

Mine waste facilities are an essential part of any mining process. In several cases such as Los Frailes(1) the design failure of the tailings facility caused massive financial damage to the mining company. More recently, the breach of the Mount Polley Dam in British Columbia caused a 45% drop in the value of the company, and at the time of writing is expected to cost the company around $100 million in clean up costs [1]. Every waste facility is unique, since the geological factors differ at each mine, however most waste facilities can fall into the category of either waste dumps, or tailings ponds. Understanding of the geological conditions is paramount as they will dictate the location, size, and constructability of the waste facility.

The most important part of the stability analysis is determining what you are trying to model (or: What problem are you trying to solve?). In the case of mine waste facilities, the objectives are simple:

  1. Design the structure such that it will retain the material behind it, and still be stable.
  2. Try to make the structure take up as little space as possible.

In the case of point 1, either the waste rock or the tailings will apply a force to the This requires having a detailed knowledge of the site and project background, as the foundation conditions will heavily dictate the design.

Geological Model of the Site

Understanding the geology at the Mine site is of the utmost importance. Through various site investigations, The geological model of the site is developed. This information is vital to



One important part of stability analysis is determining what standard of design to use between Allowable Stress Design (ASD) and Load Resistance Factor Design (LRFD). The current state of geotechnical engineering is such that since LRFD is probability based, it is typically used only in soil- structure interactions (such as MSE walls and Pile design).

When using ASD, it is important to choose an appropriate Factor of Safety (FS) for the project conditions. Generally, a higher factor of safety is required for situations where there is more uncertainty, but a higher factor of safety typically means an increase in cost for the mine. There is a requirement of the designer to cover high and low values – or was that specific to sheared/unsheared shales?

Stability Models

In order to decide how to model stability, the likely failure mode and stress conditions must be understood. Some models include (in increasing complexity):

• Limit equilibrium (Rocscience Slide, Geo-Studio SLOPE/W)

• Finite element (Rocscience Phase2, GeoStudio SIGMA/W, Plaxis)

• Finite Difference (Itasca FLAC)

• Distinct element (Itasca UDEC)

In the case of mine waste facilities, there are usually relatively low stresses, and the structures are usually constructed from soil like materials. Therefore limit equilibrium analysis is a commonly used model as it is simple and relevant. Mine waste facilities are typically processed material such as blast rock or milled material, which is placed above ground. Thus, the Distinct Element Model is rarely used except for specific cases.

Limit Equilibrium

A Slope divided into slices. The forces on the slices are added together to determine the factor of safety of the slope
The Ordinary Method does not account for horizontal forces on the slice or shear forces
Similar to the ordinary method but it does account for horizontal forces. Shear forces are still not taken into account

A limit equilibrium analysis, although the simplest of the models, is applicable to many slope design problems. There are several methods that are used to calculated the factor of safety of the landslide. There are non-general equilibrium methods such as Ordinary, Bishop, and Janbu, as well as two general equilibrium methods: Spencer and Morganstern-Price. They all work by taking a slope and selecting a slip surface, which is the modelled landslide. The landslide is then cut up into vertical slices, and calculating the moments and or forces that affect the landslide.

Non-general equilibrium methods have the advantage that they are simpler to use and can be calculated by hand. However this comes at the expense of not satisfying all aspects of equilibrium. The Ordinary Method was the first method of slices to be developed, and calculates only the moment equilibrium for the slope using the following equation:

This method makes the assumption that the shear forces as well as the result of the horizontal forces are are equal, and thereforee not calculated. This assumption makes the problem statically determinate however, as can be seen in the Ordinary slice, the force vector diagram does not close, and is therefore not in equilibrium. The advantage of this is that the equilibrium equation can be computed by hand, however it typically gives low factors of safety, meaning an overly conservative design.

Bishop developed an improvement over the Ordinary Method in 1955.

Finite Difference and Finite Element

Finite Difference/Element models are vastly more complex than Limit Equilibrium models. This section will explain the general principles used in the two models types, as well as the differences between the two.

List of Other Important Considerations

Key design parameters that are outside the scope of this page:

  • Construction material availability
  • Construction Sequencing
  • Filter design on tailings ponds


Coduto Budhu

Krahn, John; Stability Modelling with SLOPE/W, an Engineering Methodology; 204, GEO-SLOPE International Ltd.