Difference between revisions of "Stability Graph Method"

From QueensMineDesignWiki
Jump to: navigation, search
Line 45: Line 45:
Figure 1: Rock Stress Factor A (Potvin, 1988) for Stability Graph analysis
== Cable Support Guidelines ==
== Cable Support Guidelines ==

Revision as of 17:27, 3 February 2015


Empirical databases such as the Q and RMR systems were develop as a tool to help guide engineers when designing excavations underground, these databases are primarily based on civil engineering tunnel cases at low to moderate depth. These tunnels were designed as permanent openings with high traffic. The Q and RMR systems are very important to tunnel design work, however can be over conservative when applied to temporary or non-entry excavations. Mathews (1981) developed an empirical method to dimension stopes based on a stability number, N which defines the rock mass's ability to stand up to given ground conditions, and shape factor, S which is the stope face hydraulic radius that accounts for the geometry of the stope surface. The method dimensions each active stope face based on, N and S. The initial stability graph developed by Mathews is based on 50 case histories.

Potvin (1988) further expanded the original stability graph with an additional 175 case histories and introduced the modified stability number, N' to replace Mathews stability number. The modified stability number is similar to the N value developed by Mathews, but has different factor weightings.

The database assembled for the modified stability graph reflects Canadian practice, and is bias towards Canadian ground conditions

Input Parameters

Modified Stability Number, N'

N' = Q' x A x B x C


Q = RQD/Jn x Jr/Ja

RQD/Jn: is the measure of block size for a jointed rock mass Jr/Ja: is the measure of joint surface strength and stiffness

A: is the measure of the ratio of intact rock strength to induced stress. As the maximum compressive stress acting parallel to a free stope face approaches the unconfined compressive strength of the rock, factor A degrades to reflect the related instability due to rock yield.

B: is the measure of the relative orientation of dominant jointing with respect to a free stope face. Joints forming shallow angle (10-30 degrees) with the free face are likely to become unstable, where joints perpendicular to the free face have little influence on stability

C: is the measure of the influence of gravity on the stability of the face being considered. The back of the stope or structural weaknesses of a stope oriented unfavorably with respect to gravity sliding have a maximum impact on stability

Shape factor, S

The shape factor S also known as the hydraulic radius (HR) is defined by the ratio of a stope free face's area to perimeter, calculated as:

HR = Area(m^2)/Perimeter(m) = w x h/2(w + h)

Calculation of Input Parameters


The input parameters for Q' can be measured and calculated as described in Site investigation and rock mass characterization

Rock Stress Factor A

Rock Stress Factor A.PNG Figure 1: Rock Stress Factor A (Potvin, 1988) for Stability Graph analysis

Cable Support Guidelines