Ventilation air heating

From QueensMineDesignWiki
Revision as of 10:14, 3 February 2016 by KOHalloran (talk | contribs) (Created page with "== Introduction == Mining is a global industry, and mines exist all over the world in a variety of different climates. As such, mines experience different temperature regula...")

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Introduction

Mining is a global industry, and mines exist all over the world in a variety of different climates. As such, mines experience different temperature regulation needs. Some mines need little or no temperature regulation. These mines are typically shallow mines in mild or warm climates, as well as open pit mines. Very deep mines and mines in hot climates generally require cooling systems in order to maintain a reasonable working temperature for underground workers. Mines in cold climates often require heating systems to keep the air temperature above freezing in order to prevent ice buildup in the mine, especially in the wintertime. These heating systems can make up over 50% of all mine ventilation costs at an arctic mine (ASHRAE, 2015), and can contribute up to 20% of a mine’s total energy costs. It is therefore important to design a mine air heating system that is both effective and efficient.

Ice Formation in Mines

In mines where air temperatures extend below freezing, there is the potential for ice and frost formation on the surfaces of the mine excavation. As hot, humid air from inside the mine travels upwards in elevation, often through a shaft or a ramp, the process of autocompression causes the air to expand in volume and decrease in temperature. The dry bulb temperature drops until it reaches its saturation level, at which point the water in the humid air precipitates out as fog or ice crystals. This precipitation forms a layer of ice on the surface of the excavation, and over time there can be significant ice buildup in a mine which causes a major safety hazard.

Safety Hazards and Operational Problems of Ice in Mines

An ice buildup in a mine can have a variety of safety hazards and operational difficulties associated with it. The ice can build up in a raise, shaft, or ramp to a point where it has significant mass. This ice mass has the potential to fall, especially if conditions warm up, which can pose a serious safety risk to anyone who could be in the path of the falling ice chunks.

The buildup of ice in airways over time can decrease the cross-sectional area of the airway, thereby increasing the amount of fan pressure required to ventilate the mine. This can lead to a substantial increase in fan operating costs and in extreme cases could even limit the amount of ventilation that the mine receives.

Visibility can be greatly reduced in areas where heavy precipitation occurs in the form of fog. This poses a safety hazard as well as an operational challenge because workers may not be able to see mobile equipment and other workers, which increases the risk of worker injury and can necessitate that mobile equipment slow down.

In mines with a production shaft, ice formation can be a significant problem. Ice can damage shaft support members, cables, and pipes, which can disrupt hoisting operations and is also a serious safety concern.

Finally, cold temperatures underground often necessitate the use of heavy gloves and protective clothing for workers. This can make them less efficient.

Because of all the safety concerns and operational challenges that ice formation in creates, it is important for mines operating in cold climates to heat their ventilation air above freezing so that ice does not form.

Recommended Air Temperatures

The air in the mine must be above 0 oC in order to prevent ice formation. In hoisting shafts, where ice formation can be detrimental to operations and safety, it is recommended that air be heated to at least 5oC. In ventilation raises, where no operational activities are taking place, it is recommended that a temperature of at least 1.5 oC is maintained.

Because mine air heating is very energy intensive and can make up a large portion of a mine’s energy costs, it is important to ensure that a mine is not being heated to a point where energy is being wasted.

Determining Required Heater Capacity

When selecting a mine air heater, the most important parameter to consider is the amount of heat that it can deliver to the mine. In order to select an appropriate air heater, the required heater capacity must first be determined.

The required capacity of an air heater depends on two main parameters:

  • The volumetric flow rate of the air
  • The required temperature change of the air

The volumetric flow rate of the air will often already be known, since it is generally determined based on the need to dilute diesel fumes, harmful gases, and dust in the underground mine workings. The required temperature change of the air depends on the initial temperature of the intake air, and the type of excavation to which the air is being transferred. The required temperature can be calculated by subtracting desired final air temperature from the initial air temperature and taking the absolute value of this.

English System

Many air heating systems are categorized using the English system units of Btu per hour. The required heat capacity of an air heater in Btu/h can be found using the following equation [ASHRAE]:

Q = (Air density, Lb/ft3) x (0.24 Btu/Lb. oF) x (60 min/h) x V x T

Given an air density of 0.075 Lb/ft3, this equation can be simplified to:

Q = 1.08 x V x T

Where: Q is the required heater capacity in Btu/h V is the volumetric flow rate in cubic feet per second T is the required air temperature change in degrees Fahrenheit

This simplified equation is for air at standard air density (0.075 Lb/ft3). If the mine is in an area where the air density is different from standard, the equation can be adjusted by multiplying by the local air density divided by 0.075 [HRMR Wiki].

Metric System

To find the required heater capacity in kilowatts, the following equation is used:

Q = 1.3 x V x T

Where: Q is the required heater capacity in kilowatts V is the volumetric air flow rate in m3/s T is the required air temperature change in degrees Celsius

This equation is for air at standard air density (1.225 kg/m3). If the mine is in an area where the air density is different from standard, the equation can be adjusted by multiplying by the local air density divided by 1.225.

Mine Air Heaters

In the past, mine heating systems consisted of steam coils that were heated by wood, coal, oil, or gas furnaces, as well as electrical coils. These systems are not used any more because of their inefficiency.

Other methods of heating can include the use of waste heat from compressor stations, as well as the use of controlled recirculation of mine air. Additionally, glycol or heat pump systems can be used to recover heat from mine exhaust air.

Types of Mine Air Heaters

There are two general types of mine air heaters: direct combustion heaters and indirect combustion heaters. Each type has its advantages and disadvantages, and a mine must decide what type of heater best suits its needs. In general, a direct combustion air heating system is preferred because it is more efficient and is cheaper to purchase and to operate.

Figure 1 shows the fundamental difference between a direct and indirect heating system. In a direct system, combustion occurs directly in the air stream. In an indirect system, combustion occurs in a separate chamber and heat is transferred to the air steam, with no direct interaction between the combustion chamber and the air stream.

Direct Combustion Air Heaters

Direct combustion air heaters involve the combustion of fuel, typically natural gas or propane, directly within the stream of air that is to be heated. They are quite simple systems, since they require no compartmentalization between the burners and the air stream, and thus do not need heat exchangers to transfer the heat of combustion from the combustion chamber to the air. Because of their simplicity, direct combustion air heaters require little maintenance and have very low maintenance costs (De Souza, 2015). They also have very high efficiencies, since all of the heat produced by combustion enters the airstream, and no heat exchangers are used (ASHRAE, 2015).

The main disadvantage of direct combustion air heaters is that all of the products of combustion enter the air. The burning of natural gas or propane generally produces small amounts of carbon monoxide gas, which can be dangerous if regulated levels are exceeded. The carbon monoxide, and other products of combustion, enters the intake air of the mine and adds contaminants to the air that mine workers are breathing. The carbon monoxide production from direct combustion air heaters can be between 10 and 20 parts per million (ASHRAE, 2015). The carbon monoxide levels in the air must be monitored, and the addition of carbon monoxide from direct combustion in the intake air must be offset by a decrease in the production of carbon monoxide by mining activities. This is to ensure that the carbon monoxide concentration in the mine air that workers are exposed to remains below the regulated limits (De Souza, 2015).

In mines that are very remote, particularly arctic mines, it may be difficult to obtain the natural gas or propane that a direct combustion air heating system needs. This is because remote arctic mines are often only accessible by ice road for a small portion of the year, so they get their fuel shipped in bulk. Because of this, it is often much more convenient to use diesel fuel, which has a higher energy density than natural gas and propane, and is safer to transport (De Souza, 2015). When mines use diesel fuel to heat their air, they must use an indirect combustion system.

Indirect Combustion Air Heaters

Indirect combustion air heaters involve the combustion of fuel, typically diesel, inside a combustion chamber that is separate from the air stream that is to be heated. The heat from the combustion chamber is transferred to the air via a heat exchanger. The use of a heat exchange to transfer heat from the combustion chamber to the air involves a heat loss of 15 to 25% (ASHRAE, 2015). Because of this, indirect combustion heating systems are less efficient than direct combustion systems.

The combustion must take place in a chamber that is separate from the mine air because of the fumes that are produced by the combustion. Because diesel fuel does not burn as cleanly as natural gas and propane, it cannot be used in direct combustion systems. However, since the products of combustion are not mixing with the air stream, there will be no contamination of the mine intake air (De Souza, 2015).

Indirect combustion heating systems involve a much more complicated process than direct systems, and are less reliable. Because of this, the maintenance costs for indirect heating systems are much higher than the costs for direct systems (De Souza, 2015). Indirect combustion heating systems will generally be used when the mine has easy access to diesel fuel and it is inconvenient or unfeasible to use propane or natural gas.